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We study the high-harmonic surface wave associated with nonlinear diffraction and
radiation of gravity waves by a near-surface circular cylinder. Based on nonlinear
potential-flow theory, we show analytically, using a boundary-integral equation
method, that: (a) for a circular motion of the cylinder, the leading-order outgoing
radiated waves at any harmonic are generated only in one direction; (b) for a cylinder
free to respond to regular incident waves, the total leading-order scattered waves at
any harmonic are two orders smaller upstream of the body. These theoretical results
are substantially confirmed by direct time-domain simulations of the problem.

1. Introduction
A significant aspect of nonlinear diffraction and radiation of surface waves by a

body is the generation of high-harmonic waves. Although these high-harmonic waves
generally have magnitudes that are higher order in wave steepness, they are important
to ocean structures with high natural frequencies (and small damping at these fre-
quencies), and to detection of (submerged) bodies by remote sensing (where ambient
wave energy at these frequencies/wavelengths is small). Thus, the understanding and
quantification of short-wavelength/high-harmonic waves associated with nonlinear
wave–body interactions is of theoretical interest and practical engineering relevance.

A canonical problem in this context is the nonlinear interaction of waves with
a submerged (two-dimensional) circular cylinder. A seminal work is that of Ogilvie
(1963) who applied linear theory and employed the multipole expansions of Ursell
(1950) to obtain three important results: (i) for a fixed cylinder, there is no wave
reflection (see also Dean 1948); (ii) for a cylinder undergoing a circular motion,
outgoing waves are generated in one direction only; and (iii) for an unrestrained
(neutrally buoyant) body under incident waves, the total scattered waves vanish
upstream.

For case (i) of wave reflection by a fixed circular cylinder, the linear result of
Ogilvie (1963) has recently been extended to second-harmonic waves by Friis (1990),
McIver & McIver (1990), and Wu (1991) with different approaches. Friis (1990)
solved the second-order boundary-value problem for the velocity potential using a
source-distribution method, while McIver & McIver (1990) and Wu (1991) obtained
the second-order reflected wave using the first-order solution only. The most general
result to date is that of Palm (1991), who showed that the leading-order component of
any harmonic of the reflected wave vanishes. His analysis is based on the application
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of Green’s theorem using the linear wave-source potential as the Green function.
These theoretical predictions agree with the laboratory experiments of Chaplin (1984)
and are supported by numerical results of Vada (1987) at second order and of Liu,
Dommermuth & Yue (1992) up to third order.

The present work concerns the nonlinear (high-order/high-harmonic) extension
of cases (ii) and (iii) of Ogilvie (1963), i.e. the cases when the cylinder is allowed
to undergo captive (circular) or free motions. As in Palm (1991), we apply regular
perturbation expansions and a boundary-integral equation method and solve the
associated nonlinear boundary-value problems for the velocity potential up to an
arbitrary high order in the wave steepness (or body motion). We obtain two principal
results: (a) for a circular forced motion of the cylinder, the leading-order outgoing
waves of any harmonic are generated only in one direction; and (b) for an un-
tethered (neutrally buoyant) cylinder under incident waves, the leading-order outgoing
scattered (combined diffracted and radiated) waves of any harmonic are two orders
smaller upstream than downstream of the body. In short, the predictions of Ogilvie
(1963) obtain to arbitrary high harmonic (to leading order). These theoretical results
are confirmed by direct time-domain simulations of the problem using a high-order
spectral method (Liu et al. 1992).

In § 2, we review the boundary-value problem for nonlinear wave interactions
with a submerged circular cylinder and derive general formulas for the perturbation
potentials in terms of free-surface and body-surface integrals. The analyses for the
behaviour of the nonlinear outgoing waves are given in § 3 for the forced body motion
problem, and in § 4 for the free response of the body under incident waves. In § 5,
we perform numerical simulations to confirm our theoretical predictions. Conclusions
and a discussion are given in § 6.

2. Mathematical formulation
We consider nonlinear diffraction and radiation of surface waves by a submerged

circular cylinder in a fluid layer of infinite depth. The cylinder may undergo a forced
circular oscillation or be free to respond to incident waves. The main focus is on
obtaining the behaviour of the outgoing high-harmonic waves on either side of the
body.

2.1. The boundary-value problem

We choose a global Cartesian coordinate system x = (x, y) with the x-axis in the
quiescent free surface, x positive in the direction of incident wave propagation, y
positive upward, and with the origin (0, 0) directly above the (mean position of the)
cylinder centre. We also place a local cylindrical coordinate system (r, θ) at the centre
of the cylinder, which is at a (mean) depth h below the mean free surface. Thus,
r2 = x2 + (y + h)2, and θ is measured counter-clockwise from positive x.

We assume that the flow is irrotational, and that the fluid itself is homogeneous,
incompressible, and inviscid. The flow can then be described by a velocity potential
Φ(x, t) which satisfies the Laplace equation (∇2Φ = 0) within the fluid, and vanishes
at large depth (Φ → 0 as y → −∞). On the free surface, y = η(x, t), the nonlinear
boundary condition can be written in the form

Φtt + gΦz + 2∇Φ · ∇Φt + 1
2
∇Φ · ∇(∇Φ · ∇Φ) = 0 on y = η(x, t), (2.1)

where g is the gravitational acceleration. On the body SB(t), the condition that the
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fluid does not penetrate the body gives

∂Φ

∂n
= n · X t on SB(t), (2.2)

where n = (nx, ny) is the unit normal into the body and X = (X(t), Y (t)) denotes
the motion of the body. The boundary-value problem for Φ is complete with the
imposition of an appropriate radiation condition as |x| → ∞, in general, a physical
requirement that the wave disturbances due to the body must propagate away from
the body.

The free-surface elevation follows directly from the dynamic boundary condition
on the free surface and is given by

η = −1

g
(Φt + 1

2
∇Φ · ∇Φ)|y=η. (2.3)

The pressure in the fluid is determined from Bernoulli’s equation, and the force on
the body can be obtained by integration of the pressure over the body surface. The
motion of the body is governed by Newton’s second law.

2.2. Perturbation expansions and time-harmonic decompositions

We assume that the steepness of surface waves is small and that the amplitude of
the body motion compared to the body dimension is also small. For convenience,
we employ the same small parameter, ε ≡ KA (or ≡ K|X |) � 1, to measure the
wave motion and body oscillation, where K and A are respectively the (fundamental)
wavenumber and wave amplitude. Referring to ε, we expand the velocity potential Φ,
the surface elevation η, and the body motion X , in perturbation series:

Φ = Φ(1) + Φ(2) + . . . , η = η(1) + η(2) + . . . , and X = X (1) + X (2) + . . . , (2.4)

where ( )(m) denotes a quantity of O(εm).
We focus on the case of regular incident waves and time-periodic motions of the

body and surface waves. We can then separate out the time dependences of the
perturbation potentials, Φ(m), m = 1, 2, . . ., in terms of the fundamental frequency ω:

Φ(1)(x, t) = Re{φ(1)
1 (x)eiωt}, (2.5)

Φ(2)(x, t) = Re{φ(2)
0 (x) + φ

(2)
2 (x)ei2ωt}, (2.6)

Φ(m)(x, t) = Re{φ(m)
1 (x)eiωt +φ

(m)
3 (x)ei3ωt + · · ·+φ(m)

m (x)eimωt}, m > 2, m odd, (2.7)

Φ(m)(x, t) = Re{φ(m)
0 (x) +φ

(m)
2 (x)ei2ωt + · · ·+φ(m)

m (x)eimωt}, m > 2, m even. (2.8)

In the above, φ(m)
n denotes the (complex) amplitude of the mth-order, nth-harmonic

potential, and clearly, the leading-order part of the mth harmonic solution is of mth
order in magnitude, except that for the zeroth harmonic which is of second order.
The same decomposition also applies to the surface elevation η and the body motion
X . Our interest is the leading-order behaviour of the solution at different harmonics,
m, so the notation for the leading-order amplitude of the mth harmonic waves (φ(m)

m ,
say, for m = 1, 2, . . .) will be simplified in what follows by omitting the subscript m
(i.e. φ(m)).

We now derive the free-surface boundary condition for the perturbation potential
φ(m), m = 1, 2, . . . . We introduce the perturbation expansions and harmonic decompo-
sitions for Φ and η into (2.1) and (2.3), and expand the free-surface condition (2.1) in
a Taylor series about y = 0. Upon eliminating η, and collecting terms at each order
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and harmonic, we obtain a sequence of boundary conditions, applied on the mean
free surface, for φ(m), m = 1, 2, . . .:

φ(m)
y −Kmφ

(m) = f(m)(x) on y = 0, (2.9)

where Km ≡ m2K = m2ω2/g. Here the free-surface forcing f(m) depends only upon
lower-order potentials: φ(`), ` < m. For the first three orders, for example, f(m) is given
by

f(1) = 0, (2.10)

f(2) ≡ iω

2g
{φ(1)[φ(1)

yy −Kφ(1)
y ]− 2[∇φ(1)]2}

= − iω

2g
{3K2[φ(1)]2 + φ(1)φ(1)

xx + 2[φ(1)
x ]2}, (2.11)

f(3) ≡ − 1

8g
{24iω∇φ(1) · ∇φ(2) − 8Kφ(1)∇φ(1) · ∇φ(1)

y + ∇φ(1) · ∇[∇φ(1)]2}

+
iω

2g
{φ(1)[φ(2)

yy − 4Kφ(2)
y ] + 2φ(2)[φ(1)

yy −Kφ(1)
y ]}

+
1

8g
{2Kφ(1)φ(1)

y + [∇φ(1)]2}[φ(1)
yy −Kφ(1)

y ]

= −K
2

8g
{[φ(1)]2[3K2φ(1) − 7φ(1)

xx ] + 3[φ(1)
x ]2[φ(1)

xx/K
2 + 4φ(1)] + φ(1)[φ(1)

xx ]2}

− iω

g
{φ(1)[21K2φ(2) + 5Kf(2) + φ(2)

xx/2] + φ(1)
xxφ

(2) + 3φ(1)
x φ

(2)
x }, (2.12)

where all quantities are evaluated at y=0.
Similarly, for the body boundary condition, we expand (2.2) in a Taylor series about

the mean position of the body S̄B . Upon introducing the perturbation expansions
and harmonic decompositions for Φ and X , and collecting terms at each order and
harmonic, we obtain a sequence of Neumann boundary conditions, applied on the
mean body position, for φ(m), m = 1, 2, . . .:

∂

∂n
φ(m)(x) = b(m)(x) on S̄B, (2.13)

where the body forcing b(m) is given in terms of the body motion and lower-order
potentials φ(`), ` < m. For the first three orders, b(m) is given by

b(1) = iωn · χ(1), (2.14)

b(2) = 2iωn · χ(2) − n · ∇ [χ(1) · ∇φ(1)
]
/2, (2.15)

b(3) = 3iωn · χ(3) − n · ∇ [χ(1) · ∇φ(2) + χ(2) · ∇φ(1)
]
/2− n · ∇ [χ(1) · ∇]2 φ(1)/4, (2.16)

where all quantities are evaluated on S̄B , and χ(m) denotes the amplitude of the
mth-harmonic body motion, which is of mth order.

In addition to the boundary conditions on the mean positions of the free surface
and the body, φ(m), m = 1, 2, . . . , also need to satisfy the Laplace equation in the fluid
domain, the condition at infinite depth, and the radiation condition as |x| →∞. At
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each order, m, the boundary-value problems for each perturbation potential φ(m) are
linear, and can be solved successively starting from m = 1.

In terms of φ(m), the perturbation surface elevation η(m) can be obtained by Taylor
expansion of (2.3) about the mean free surface. The perturbation pressure p(m)(x) in
the fluid can be obtained from the Bernoulli equation and is given by

p(1)/ρ = −iωφ(1), (2.17)

p(m)/ρ = −imωφ(m) − 1

4

m−1∑
`=1

∇φ(`) · ∇φ(m−`), m > 2, (2.18)

where ρ is the fluid density. Note that in (2.17) and (2.18), only the leading-order
terms for the mth harmonic pressure (m = 1, . . .) are included.

2.3. The boundary-integral equation for φ(m)

We define a Green function, G(x, x′, Km), which is harmonic everywhere in the fluid
except at x′ where it is source like. In addition, G satisfies the linearized free-surface
condition (Gy − KmG = 0 on y = 0), the radiation condition (Gx ± iKmG = 0 as
x → ±∞), and vanishes at large depth (G → 0 as y →−∞). Physically, G represents
the velocity potential due to a point source with pulsating strength, at frequency mω.

The solution for G is classical (e.g. Wehausen & Laitone 1960):

G(x, x′, Km) = log r/r∗ + G′(x, x′, Km), (2.19)

where r = [(x−x′)2 + (y− y′)2]1/2, r∗ = [(x−x′)2 + (y+ y′)2]1/2, and G′ can be written
as

G′ = −
∫ ∞

0

_
eik(z̄−z′)

k −Km

dk −
∫ ∞

0

_
e−ik(z−z̄′)

k −Km

dk. (2.20)

Here z = x + iy, z̄ is the complex conjugate of z, and
∫
_ indicates that the path of

integration is to go above the pole in the complex k-plane. As |x| →∞, the asymptotic
behaviour of G can be obtained by contour integration:

G ∼ 2iπe−iKm(z−z̄′), x→+∞, (2.21)

G ∼ 2iπeiKm(z̄−z′), x→−∞. (2.22)

Applying Green’s second identity to the potential φ(m) and the Green function G,
and using their boundary conditions on the free surface and at infinite depth, we
obtain an integral equation for φ(m):

πφ(m)(x)−
∫
S̄B

− φ(m) ∂G

∂n′
ds′ = −

∫
S̄B

G
∂φ(m)

∂n′
ds′ −

∫
SF

f(m)G′ ds′

+

∫
S±

[
φ(m) ∂G

∂n′
− G∂φ

(m)

∂n′

]
ds′, (2.23)

for x ∈ S̄B . In (2.23), a Cauchy principal-value integral is indicated on the left-hand
side, ∂/∂n′ denotes normal derivative out of the fluid, SF represents the mean free
surface on which log r/r∗ = 0, and S± denotes the boundaries far upstream and
downstream of the body.

The integration over S± in (2.23) depends on the far-field behaviour of G and φ(m).
These are known for the Green function G (given by (2.21) and (2.22)). The far-field
behaviour of φ(m) depends on that of the free-surface forcing f(m)(x), and, for an
arbitrary order m, is in general not known. For the special cases considered in this
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paper, however, we are able to show that at any order m, f(m) → 0 as |x| →∞. As a
result, φ(m) represents free propagating waves only in the far field.

To specify the radiation condition for φ(m), we decompose φ(m) into the incident
wave φ(m)

I and the disturbance (scattered) wave due to the body φ(m)
D :

φ(m) = φ
(m)
I + φ

(m)
D , m = 1, 2, . . . . (2.24)

These satisfy the respective radiation conditions(
∂/∂x+ iKm

)
φ

(m)
I = 0, x→ ±∞, (2.25)(

∂/∂x± iKm

)
φ

(m)
D = 0, x→ ±∞, (2.26)

where, without loss of generality, the incident wave is assumed to propagate in the
positive x-direction.

Applying (2.25) and (2.26), and using the asymptotic values of G, we can evaluate
the integrals over S± and rewrite (2.23) as

πφ(m)(x)−
∫
S̄B

− φ(m) ∂G

∂n′
ds′ = −

∫
S̄B

G
∂φ(m)

∂n′
ds′

−
∫
SF

f(m)G′ ds′ + 2πφ(m)
I (x), x ∈ S̄B. (2.27)

At successive orders m, the body forcing ∂φ(m)/∂n′, the free-surface forcing f(m),

and the incident wave potential φ(m)
I can be considered known. Hence, (2.27) is a

second-kind Fredholm integral equation for the unknown potential φ(m) on the body.
The potential φ(m) anywhere in the fluid can be obtained from φ(m) on S̄B . Applying

Green’s second identity to φ(m) and G, and after using the radiation conditions and
the boundary conditions on the free surface and at infinite depth, we obtain

2π[φ(m)(x)− φ(m)
I (x)] =

∫
S̄B

[
φ(m) ∂G

∂n′
− G∂φ

(m)

∂n′

]
ds′ −

∫
SF

f(m)G′ ds′, (2.28)

for any x in the fluid.

2.4. Solution of the integral equation

Since all quantities on the body must be periodic functions of the polar angle θ, the
integral equation (2.27) can be solved using a Fourier decomposition in θ. We expand
the potential φ(m) and its normal derivative ∂φ(m)/∂n on the body in Fourier series:

φ(m)(θ) =

∞∑
`=0

α+
m`e

i`θ +

∞∑
`=1

α−m`e
−i`θ, (2.29)

∂

∂n
φ(m)(θ) =

∞∑
`=1

β+
m`e

i`θ +

∞∑
`=1

β−m`e
−i`θ, (2.30)

where α±m` and β±m` are complex constants. For ∂φ(m)/∂n, the zeroth mode does not
need to be included since the net volume flux out of the body surface is zero.

Similarly, the Green function G and its normal derivative ∂G/∂n′ can be expanded
in Fourier series in θ and θ′ (see e.g. Palm 1991). Upon using the relation z = aeiθ− ih
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for z ∈ S̄B , we have

log(r/r∗) ≡ Re {log(z − z′)− log(z − z̄′)}
= Re{log eiθ[1− ei(θ′−θ)]− log 2ih[1− (eiθ − e−iθ′)/2ih]}
= log 2h− 1

2

∞∑
`=1

1

`
[ei`(θ′−θ) + e−i`(θ′−θ)]

−1

2

∞∑
`=1

i`

`(2h)`
[(e−iθ′ − eiθ)` + (e−iθ − eiθ′)`], θ 6= θ′; (2.31)

G′(θ, θ′, Km) ≡ −
∫ ∞

0

_
e−2kheik(e−iθ−eiθ′ )

k −Km

dk −
∫ ∞

0

_
e−2khe−ik(eiθ−e−iθ′ )

k −Km

dk

= −
∞∑
`=0

i`

`!

∫ ∞
0

_
k`e−2kh

k −Km

dk[(e−iθ′ − eiθ)` + (e−iθ − eiθ′)`]; (2.32)

and

∂

∂n′
G(θ, θ′, Km) = − 1

2
+

∞∑
`=0

H`[e
−iθ′(e−iθ′ − eiθ)` − eiθ′(e−iθ − eiθ′)`], (2.33)

with the constant H` given by

H` =
1

2

(
i

2h

)`+1

+
i`+1

`!

∫ ∞
0

_
k`+1e−2kh

k −Km

dk. (2.34)

Using (2.29)–(2.33), the body-surface integrals in (2.27) can be evaluated:

−
∫
S̄B

− φ(m) ∂G

∂n′
ds′ =

∞∑
`=0

∞∑
`′=0

P+
``′α

+
m`′e

i`θ +

∞∑
`=1

∞∑
`′=1

P−``′α
−
m`′e

−i`θ, (2.35)

−
∫
S̄B

G
∂φ(m)

∂n′
ds′ =

∞∑
`=0

∞∑
`′=1

Q+
``′β

+
m`′e

i`θ +

∞∑
`=1

∞∑
`′=1

Q−``′β
−
m`′e

−i`θ, (2.36)

where P±``′ and Q±``′ are known complex constants given in terms of mode numbers `
and `′, wavenumber Km, and mean body submergence h.

After substituting G′ and changing the order of integration, the free-surface integral
in (2.27) becomes

−
∫
SF

f(m)(x′)G′(x, x′) ds′ = 2π

∫ ∞
0

_

[
e−ikzf̃

(m)
(k)

k −Km

+
eikz̄ f̃

(m)
(−k)

k −Km

]
dk, (2.37)

where f̃
(m)

is the Fourier transform of f(m)(x) and has the form

f̃
(m)

(k) =
1

2π

∫ ∞
−∞
f(m)(x)eikx dx. (2.38)

Expanding the exponential functions in (2.37) in power series, it follows that

−
∫
SF

f(m)(x′)G′(x, x′) ds′ =

∞∑
`=0

γ+
m`e

i`θ +

∞∑
`=1

γ−m`e
−i`θ, (2.39)
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where the Fourier modal amplitudes γ± are given by

γ±m` = 2πδ`
(∓i)`

`!

∫ ∞
0

_
k`e−kh

k −Km

f̃
(m)

(±k) dk, ` = 0, 1, . . . ,∞, (2.40)

with δ0 = 2 and δ` = 1 for ` > 1.
For the incident waves, φ(m)

I (x) can also be expanded in a Fourier series:

2πφ(m)
I (θ) =

∞∑
`=0

σ+
m`e

i`θ +

∞∑
`=1

σ−m`e
−i`θ, (2.41)

where σ± are the associated modal amplitudes.
Substituting (2.29), (2.30), (2.35), (2.36), (2.39), and (2.41) into the integral equation

(2.27), and collecting coefficients for each Fourier mode, we obtain two uncoupled
infinite sets of algebraic equations for the unknown amplitudes α±m`:

πα+
m` +

∞∑
`′=0

P+
``′α

+
m`′ = γ+

m` + σ+
m` +

∞∑
`′=1

Q+
``′β

+
m`′ , ` = 0, 1, . . . ,∞, (2.42)

and

πα−m` +

∞∑
`′=1

P−``′α
−
m`′ = γ−m` + σ−m` +

∞∑
`′=1

Q−``′β
−
m`′ , ` = 1, 2, . . . ,∞. (2.43)

A notable feature of (2.42) and (2.43) is that α+ (or α−) depends only on the positive
(or negative) Fourier modes of the forcing of the integral equation (2.27).

For x on SF , the Green function G = G′. Upon substituting G′ into (2.28), the
body integrals can be evaluated by using (2.29) and (2.30) and then expanding
the exponential functions (e−ikz′ and eikz̄′) into power series. Changing the order of
integration for the free-surface integral, we obtain from (2.28) the velocity potential
due to the body on the mean free surface:

φ
(m)
D (x) =

∫ ∞
0

_

[
C+
m (k)

k −Km

e−ikx +
C−m (k)

k −Km

eikx

]
dk, y = 0, (2.44)

with C±m given by

C±m (k) = f̃
(m)

(±k) + e−kh
∞∑
`=1

(±ik)`

`!
(`α±m` + β±m`). (2.45)

Applying the asymptotic values of G at the far field and evaluating the body integrals
in (2.28), we obtain the asymptotic solutions of the body disturbance potential:

φ
(m)
D (x) ∼ −2iπC+

m (Km)e−iKmz, x→+∞, (2.46)

φ
(m)
D (x) ∼ −2iπC−m (Km)eiKmz̄ , x→−∞. (2.47)

3. Cylinder forced to oscillate in a circular orbit
We study the problem of wave radiation due to a forced circular motion of a

submerged circular cylinder. From linearized analysis, it is known that outgoing
(first-harmonic) waves are generated in one direction only (Ogilvie 1963). We shall
generalize this result to arbitrary high-harmonic waves by including nonlinear bound-
ary effects of the free surface and body.
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Without loss of generality, the body is considered to perform a clockwise circular
motion with frequency ω and amplitude R, i.e. X (t) = Re{χ(1)eiωt} with χ(1) = (iR,−R)

and χ(m) = (0, 0) for m = 2, 3, . . . . No incident wave is involved so φ(m)
I = 0 for any m.

For this case, we shall show that outgoing waves of any harmonic propagate toward
the right (positive x) direction only, i.e. φ(m) → 0 as x→−∞ for any m.

3.1. First-harmonic waves

At first order, m=1, the free-surface forcing f(1) ≡ 0 and thus γ−1` = 0, ` = 1, 2, . . .
(cf. (2.40)). On the body, n = −(cos θ, sin θ). From (2.14), the body forcing b(1) =
iωn · χ(1) = ωReiθ , which leads to β−1` = 0, ` = 1, 2, . . . (cf. (2.30)). From (2.43) and
(2.45), it directly follows that α−1` = 0, ` = 1, 2, . . . , and C−1 = 0. Hence, we have from
(2.47) that φ(1) = 0 as x→−∞.

The potential on the body then becomes (cf. (2.29))

φ(1)(θ) =

∞∑
`=0

α+
1`e

i`θ. (3.1)

The potential on the mean free surface follows from (2.44):

φ(1)(x) =

∫ ∞
0

_
C+

1 (k)

k −K e−ikx dk, y = 0. (3.2)

From (2.46), the asymptotic value of the potential far downstream is obtained to be

φ(1)(x) ∼−2iπC+
1 (K)e−iKz, x→+∞. (3.3)

3.2. Second-harmonic waves

At second order, m = 2, f(2)(x) vanishes far upstream owing to φ(1) = 0 as x →−∞,
and the substitution of (3.3) into (2.11) leads to f(2)(x) = 0 as x →+∞. Thus, φ(2)

contains only free waves in the far field and (2.26) is the proper form of the radiation
condition. From (3.2), it is clear that the Fourier transform of φ(1)(x), denoted by

φ̃
(1)

(k), vanishes for negative values of k. Since f(2) consists of products of φ(1) and its

x-derivatives (cf. (2.11)), we can evaluate f̃
(2)

through convolutions of φ̃
(1)

, φ̃
(1)

x , and

φ̃
(1)

xx , and obtain that f̃
(2)

(k) = 0 for k < 0. This gives γ−2` = 0, ` = 1, 2, . . . (cf. (2.40)).
With the relation ∂/∂n = −∂/∂r, we rewrite the body forcing b(2) in (2.15) as

b(2)(x) =
R

2

∂

∂r

(
i
∂

∂x
− ∂

∂y

)
φ(1)(x), x ∈ S̄B. (3.4)

Using the coordinate transform relations rx = cos θ, ry = sin θ, θx = − sin θ/r, and
θy = cos θ/r, we convert the x- and y-derivatives in (3.4) into r- and θ-derivatives to
obtain

b(2)(θ) = eiθ R

2

(
i
∂2

∂r2
− 1

r

∂2

∂r∂θ
+

1

r2

∂

∂θ

)
φ(1)(r, θ), r = a. (3.5)

From Laplace’s equation, we have

∂2φ(1)

∂r2
=

[
−1

r

∂

∂r
− 1

r2

∂2

∂θ2

]
φ(1). (3.6)

Substituting (3.6) into (3.5), it becomes clear that b(2) is specified in terms of θ-
derivatives of φ(1) and φ(1)

r only. From the first-order solution, it is known that φ(1)(θ)



272 Y. Liu, Q. Zhu and D. K. P. Yue

and φ(1)
r (θ) on the body contain only positive Fourier modes, i.e. ei`θ , ` > 0. As a

result, b(2)(θ) must not contain any negative Fourier modes. Thus β−2` vanishes for
any `.

Upon obtaining that f̃
(2)

(k < 0), γ−2`, β−2` = 0, it follows that α−2` = 0, ` = 1, 2, . . . (cf.
(2.43)), and then C−2 = 0 (cf. (2.45)). From (2.47), we find φ(2) = 0 as x →−∞. The
second-order potential on the body thus takes the form

φ(2)(θ) =

∞∑
`=0

α+
2`e

i`θ. (3.7)

The potential on the mean free surface and its asymptotic value far downstream
become

φ(2)(x) =

∫ ∞
0

_
C+

2 (k)

k −K2

e−ikx dk, y = 0, (3.8)

and

φ(2)(x) ∼−2iπC+
2 (K2)e

−iK2z , x→+∞. (3.9)

3.3. Third-harmonic waves

From (2.12), we see that the third-order free-surface forcing f(3) consists of three
groups of terms: (i) [φ(1)∇φ(1) ·∇φ(1)

y ] and [∇φ(1) ·∇φ(2)]; (ii) [∇φ(1) ·∇(∇φ(1))2]; and (iii)

[φ(1)
yy −Kφ(1)

y ] and [φ(2)
yy −K2φ

(2)
y ]. Far downstream, φ(1), φ(2) = 0 and thus f(3) vanishes

as x →−∞. Far upstream, both φ(1) and φ(2) are outgoing waves (in infinite depth)
and thus (∇φ(1))2, ∇φ(1) · ∇φ(2), [φ(1)

yy −Kφ(1)
y ], and [φ(2)

yy −K2φ
(2)
y ] all vanish as x→+∞

(cf. (3.3) and (3.9)). Whence, f(3) also vanishes as x →+∞. It then follows that φ(3)

represents free waves only in the far field.
Using the free-surface condition (2.9) and Laplace’s equation, the y-derivatives

of φ(1) and φ(2) on y = 0 can be evaluated in terms of their x-derivatives. From
(2.12), f(3)(x) essentially consists of products of φ(1), φ(2), f(2), and their x-derivatives

only. Since φ̃
(1)

(k), φ̃(2)(k), and f̃
(2)

(k) vanish for negative values of k, it follows that

f̃
(3)

(k) = 0 for k < 0.
For the body forcing, we first rewrite b(3) in (2.16) as

b(3)(x) =
R

2

∂

∂r

(
i
∂

∂x
− ∂

∂y

)
φ(2)(x) +

R2

4

∂

∂r

(
i
∂

∂x
− ∂

∂y

)2

φ(1)(x), x ∈ S̄B. (3.10)

Upon changing x-, y-derivatives into r-, θ-derivatives, we obtain

b(3)(θ) =
R2

4

∂

∂r

(
ieiθ ∂

∂r
− eiθ

r

∂

∂θ

)2

φ(1)(θ) + eiθ R

2

∂

∂r

(
i
∂

∂r
− 1

r

∂

∂θ

)
φ(2)(θ)

= e2iθ R
2

4

∂

∂r

(
− ∂2

∂r2
+

i

r2

∂

∂θ
− 2i

r

∂2

∂r∂θ
+

1

r

∂

∂r
+

i

r2

∂2

∂θ2

)
φ(1)(θ)

+eiθ R

2

∂

∂r

(
i
∂

∂r
− 1

r

∂

∂θ

)
φ(2)(θ), r = a. (3.11)

Similarly to (3.6), the following relations can be derived from Laplace’s equation:

∂3

∂r2∂θ
= −1

r

∂2

∂r∂θ
− 1

r2

∂3

∂θ3
, and

∂3

∂r3
=

2

r2

∂

∂r
+

3

r3

∂2

∂θ2
− 1

r2

∂3

∂r∂θ2
. (3.12)

Using (3.6) and (3.12), it follows that b(3) in (3.11) consists of terms proportional
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to θ-derivatives of φ(1), φ(1)
r , φ(2), and φ(2)

r only. Since φ(1), φ(2) as well as their first
normal derivatives on the body contain positive Fourier modes only, b(3) does not
possess terms proportional to ei`θ , ` < 0. Thus, β−3` vanishes for ` = 1, 2, . . . .

From (2.43) and (2.45), we obtain that α−3` = 0 for any ` and C−3 = 0, which gives
φ(3) = 0 as x→−∞ (cf. (2.47)). The third-order potentials on the body, on the mean
free surface, and far downstream are respectively given by

φ(3)(θ) =

∞∑
`=0

α+
3`e

i`θ, (3.13)

φ(3)(x) =

∫ ∞
0

_
C+

3 (k)

k −K3

e−ikx dk, y = 0, (3.14)

φ(3)(x) ∼−2iπC+
3 (K3)e

−iK3z , x→+∞. (3.15)

3.4. mth-harmonic waves, m > 4.

At arbitrary mth order, the free-surface forcing f(m) consists of products of potentials
φ(n), n 6 m − 1, and their derivatives. As in the case of m = 3, f(m) can be divided
into three groups of terms, where groups (i) and (ii) consists of terms proportional to
∇φ(n) · ∇φ(n) and its y-derivatives, while group (iii) contains terms of φ(n)

y −Knφ
(n) and

its y-derivatives. If φ(n), n 6 m − 1 is zero far downstream, and possesses a solution
proportional to ∼ eiKnz far upstream, ∇φ(n) ·∇φ(n), φ(n)

y −Knφ
(n), and their y-derivatives

all vanish. Hence f(m) = 0 as |x| →∞ and φ(m) contains only free waves in the far
field.

Using Laplace’s equation and the free-surface condition (2.9), the y-derivatives of
φ(n) on y = 0 can be evaluated in terms of φ(n), f(n) and their x-derivatives. In follows
that the free-surface forcing terms f(m) are also given in terms of products of φ(n),

f(n), n = 1, . . . , m− 1, and their x-derivatives. Since φ̃(n)(k) and f̃
(n)

(k), n = 1, . . . , m− 1,

vanish for negative values of k, f̃
(m)

(k) = 0 for k < 0 as a result of convolutions of

φ̃(n)(k) and f̃
(n)

(k). From (2.40), we thus obtain γ−m` = 0, ` = 1, 2, . . . .
On the body, the forcing b(m) can be written in a general form:

b(m)(θ) = −
m−1∑
q=1

(
1

q!2q

)
n · ∇[χ(1)

1 · ∇]qφ(m−q)(x)

=

m−1∑
q=1

Rq

q!2q
∂

∂r

(
ieiθ ∂

∂r
− eiθ

r

∂

∂θ

)q
φ(m−q)(θ), r = a. (3.16)

Using the Laplace equation, high-order r-derivatives of φ(n) in (3.16) can be evaluated
in terms of θ-derivatives of φ(n) and φ(n)

r . Hence, b(m) in (3.16) can be written in terms
proportional to θ-derivatives of φ(n) and φ(n)

r only. For n < m, φ(n) and its normal
derivatives on the body are shown to be given by positive Fourier modes only. Thus,
b(m) must also contain only positive Fourier modes, i.e. β−m` = 0, ` = 1, 2, . . . .

From (2.43), (2.45), and (2.47), it follows that α−m` = 0 for any `, C−m = 0 and thus
φ(m) = 0 as x→−∞. Finally, the potential on the body is given by

φ(m)(θ) =

∞∑
`=0

α+
m`e

i`θ. (3.17)

The potential on the mean free surface and its behaviour far downstream are given
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by

φ(m)(x) =

∫ ∞
0

_
C+
m (k)

k −Km

e−ikx dk, y = 0, (3.18)

φ(m)(x) ∼ −2iπC+
m (Km)e−iKmz, x→+∞. (3.19)

The corresponding surface elevation η(m) is given in terms of products of φ(n), n 6 m
and their derivatives. Since all these quantities are zero as x→ −∞, the leading-order
outgoing waves of any harmonic vanish far upstream of the body.

4. Cylinder free to respond to an incident wave
We consider the interaction of an incident wave with a submerged neutrally

buoyant circular cylinder which is free to move in response to the wave exciting
forces. According to linear theory (Ogilvie 1963), the body undergoes a circular
motion and there are no reflected (first-harmonic) waves. In this section, we include
nonlinearities of the free-surface and body boundary conditions to generalize this
result to any high harmonic m.

Note that we do not include the time-averaged drift motion of the cylinder in the
analysis. From the free-surface and body boundary conditions in the presence of a
steady forward motion (e.g. Newman 1978), it is clear that the effect of the drift motion
(which is second-order) upon the harmonic solution, φ(m), m = 1, . . . , is (m+2)th order.
Thus, the drift motion does not affect the leading-order harmonic results we seek.

For incident waves, we employ a Stokes wave for which φ
(m)
I = 0 for any value of

m except φ(1)
I which is given by

φ
(1)
I =

igA

ω
e−iKz, (4.1)

where A is the incident wave amplitude. Upon expanding the exponential in (4.1) in a
power series, and using the relation z = aeiθ − ih, we obtain that σ−1` = 0, ` = 1, 2, . . . ,
in (2.41).

4.1. First-harmonic waves

At first order, m = 1, γ±1` = 0 for any `, as a result of f(1) = 0. For the incident
waves, σ−1` = 0, but σ+

1` 6= 0, for ` = 1, 2, . . . . In response to the incident waves, the

body undergoes a periodic oscillation X (1)(t) = Re{χ(1)eiωt}. Note that the motion
amplitude χ(1) = (ξ(1), ζ(1)) is unknown and to be determined from the equation of
motion. In terms of ξ(1) and ζ(1), the forcing on the body can be expressed as

b(1)(x) = − i

2
ω{[ξ(1) − iζ(1)]eiθ + [ξ(1) + iζ(1)]e−iθ}, x ∈ S̄B. (4.2)

From (4.2), we obtain that β±1` vanishes for any ` except β±11 = −iω[ξ(1) ∓ iζ(1)]/2.

From (2.42) and (2.43), it is clear that α±1` 6= 0 for any `. For convenience, we write
these in the form

α+
1` = [ξ(1) − iζ(1)]α̂+

1` + α̌+
1`, α−1` = [ξ(1) + iζ(1)]α̂−1`, ` = 1, 2, . . . , (4.3)

where α̂±1` is due to the body motion (β±11) of unit amplitude, and α̌+
1` is due to the

incident waves (σ+
1`). The potential on the body can now be expressed as

φ(1)(θ) =

∞∑
`=0

{α̌+
1` + [ξ(1) − iζ(1)]α̂+

1`}ei`θ + [ξ(1) + iζ(1)]

∞∑
`=1

α̂−1`e
−i`θ. (4.4)
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Integrating the pressure (2.17) over the body and using (4.4), we obtain the force
on the body:

F (1)
x = a

∫ 2π

0

p
(1)
1 nx dθ = πiωρa{α̌+

11 + [ξ(1) − iζ(1)]α̂+
11 + [ξ(1) + iζ(1)]α̂−11}, (4.5)

F (1)
y = a

∫ 2π

0

p
(1)
1 ny dθ = −πωρa{α̌+

11 + [ξ(1) − iζ(1)]α̂+
11 − [ξ(1) + iζ(1)]α̂−11}. (4.6)

Upon applying Newton’s second law, it follows that

iωaξ(1) = α̌+
11 + [ξ(1) − iζ(1)]α̂+

11 + [ξ(1) + iζ(1)]α̂−11, (4.7)

ωaζ(1) = α̌+
11 + [ξ(1) − iζ(1)]α̂+

11 − [ξ(1) + iζ(1)]α̂−11. (4.8)

Solving (4.7) and (4.8) for ξ(1) and ζ(1), we obtain

ξ(1) = −iζ(1) = α̌+
11/(iωa− 2α̂+

11). (4.9)

Thus ξ(1) and ζ(1) have the same magnitude, but differ in phase by π/2, i.e. the body
motion is a clockwise circular one (relative to an incident waves propagating from
left to right).

With ξ(1) and ζ(1) given by (4.9), it follows that β−1`, α−1` = 0, ` = 1, 2, . . . (cf. (4.2)

and (4.3)). Hence, C−1 = 0 from (2.45) and φ(1)
D = 0 as x→−∞ from (2.47). The total

potential on the body is

φ(1)(θ) =

∞∑
`=0

iωaα̌+
1`

iωa− 2α̂+
11

ei`θ. (4.10)

The potential on the mean free surface is found to be (cf. (2.44) and (4.1))

φ(1)(x) =
igA

ω
e−iKx +

∫ ∞
0

_
C+

1 (k)

k −K e−ikx dk, y = 0, (4.11)

and its asymptotic values in far field are given by (cf. (2.46), (2.47) and (4.1))

φ(1)(x) ∼ [igA/ω − 2iπC+
1 (K)

]
e−iKz, x→ +∞, (4.12)

φ(1)(x) ∼ igA

ω
e−iKz, x→ −∞. (4.13)

4.2. Second-harmonic waves

As in the forced motion problem, the substitution of (4.12) and (4.13) into (2.11) leads

to f(2)(x) = 0 as |x| →∞. Since φ̃
(1)

(k) = 0 for k < 0 (cf. (4.11)), f̃
(2)

(k) vanishes for
negative values of k (cf. (2.11)). This leads to γ−2` = 0, ` = 1, 2, . . . .

On the body, we separate the body forcing into two parts, b(2)(x) = b
(2)
1 (x) + b

(2)
2 (x),

where b(2)
1 , due to the second-harmonic motion of the body, is given by

b
(2)
1 (x) = 2iωn · χ(2) = −iω{[ξ(2) − iζ(2)]eiθ + [ξ(2) + iζ(2)]e−iθ}, x ∈ S̄B ; (4.14)

and b(2)
2 , associated with the first-order solution, has the form

b
(2)
2 (x) =

|ξ(1)|
2

∂

∂r

(
i
∂

∂x
− ∂

∂y

)
φ(1)(x), x ∈ S̄B. (4.15)
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Correspondingly, the Fourier components of b(2)(x) can be expressed as

β±2` = β̂±2` + β̌
±
2`, ` = 1, 2, . . . , (4.16)

where β̂ denotes the effect of b(2)
1 , while β̌ is associated with b(2)

2 . From (4.14), it follows

that β̂
±
2` vanishes for any ` except β̌

±
21 = −iω[ξ(2) ∓ iζ(2)]. For the same reason as in

the forced body motion case, b(2)
2 contains terms proportional to ei`θ , ` > 0, only, and

hence β̌
−
2` = 0, for ` > 0.

As in the first-order problem, we separate α±2` into two parts:

α+
2` = [ξ(2) − iζ(2)]α̂+

2` + α̌+
2`, α−2` = [ξ(2) + iζ(2)]α̂−2`, ` = 1, 2, . . . , (4.17)

where α̂±2` is due to second-harmonic body motion (β±21) of unit amplitude, and α̌+
2`

is due to free-surface forcing (γ+
2`) and body forcing (β̌

+

2`). Upon integrating the
second-order pressure (2.18) over the body, we obtain the force on the body:

F (2)
x = 2πiωρa{α̌+

21 + [ξ(2) − iζ(2)]α̂+
21 + [ξ(2) + iζ(2)]α̂−21}+ πiρaF(2), (4.18)

F (2)
y = −2πωρa{α̌+

21 + [ξ(2) − iζ(2)]α̂+
21 − [ξ(2) + iζ(2)]α̂−21} − πρaF(2), (4.19)

where F(2) is given by

F(2) = − i

4π

∫ 2π

0

[
∇φ(1)

1

]2

e−iθ dθ. (4.20)

Applying the equation of motion, we obtain

ξ(2) = −iζ(2) =
α̌+

21 +F(2)/2ω

2iωa− 2α̂+
21

. (4.21)

As for the first-order body response, ξ(2) and ζ(2) have equal magnitude but a phase
difference of π/2, and so the second-order response is also a clockwise circular motion.

Because of (4.21), β−2`, α−2` = 0, ` = 1, 2, . . . (cf. (4.14) and (4.17)). Thus, C−2 = 0 from
(2.45) and φ(2) = 0 as x→−∞ from (2.47). The total potential on the body is then

φ(2)(θ) =

∞∑
`=0

iωaα̌+
2` + α̂+

2`F(2)/2ω

iωa− α̂+
21

ei`θ. (4.22)

The total potential on the mean free surface and far downstream are given by

φ(2)(x) =

∫ ∞
0

_
C+

2 (k)

k −K2

e−ikx dk, y = 0; (4.23)

φ(2)(x) ∼ −2iπC+
2 (K2)e

−iK2z , x→+∞. (4.24)

4.3. mth-harmonic waves, m > 3

Following the same argument as for the forced-body oscillation case, the free-surface

forcing f(m)(x) vanishes as |x| →∞, and its Fourier components f̃
(m)

(k) = 0 for k < 0.
We thus obtain from (2.40) that γ−m` = 0 for any `.

For the body forcing, as in the case of m = 2, we separate b(m)(x) into two parts:
b(m) = b

(m)
1 + b

(m)
2 . The first part, b(m)

1 , is due to mth-harmonic oscillation of the body
and has the form

b
(m)
1 (x) = imωn · χ(m) = − i

2
mω{[ξ(m) − iζ(m)]eiθ + [ξ(m) + iζ(m)]e−iθ}, x ∈ S̄B. (4.25)
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The second part, b(m)
2 , is associated with the interactions of lower-order solutions, and

is given by

b
(m)
2 (x) =

m−1∑
q=1

1

q!2q
n · ∇[χ(1) · ∇]qφ(m−q)(x)

+

m−2∑
q=1

1

(q − 1)!2q
n · ∇[χ(1) · ∇](q−1)[χ(2) · ∇]φ(m−q−1)(x) + . . . , (4.26)

for x ∈ S̄B , where in the above, · · · represents all mth-order interactions between
the body motion χ(1), . . . , χ(m−1) and the potential φ(1), . . . , φ(m−1). Correspondingly, the
Fourier components of b(m)(x) can be expressed as

β±m` = β̂
±
m` + β̌

±
m`, ` = 1, 2, . . . , (4.27)

where β̂ denotes the effect of b(m)
1 , while β̌ is due to b

(m)
2 . Equation (4.25) indicates

that β̂
±
m` vanishes for any ` except β̂

±
m1 = −imω[ξ(m) ∓ iζ(m)]/2.

Since the body undergoes clockwise circular motions at lower orders, it follows that

χ(n) · ∇ = |ξ(n)|
(

ieiθ ∂

∂r
− eiθ

r

∂

∂θ

)
, n = 1, 2, . . . . (4.28)

Substituting (4.28) into (4.26), it can be seen that b(m)
2 (x) consists of products of ei`θ ,

` > 0, and the derivatives of φ(n), n 6 m− 1. Using Laplace’s equation, higher-order
r-derivatives of φ(n) can be converted into θ-derivatives of φ(n) and φ(n)

r . Since φ(n)

and φ(n)
r on the body do not contain negative Fourier modes, b(m)

2 (x) consists of terms

proportional to ei`θ , ` > 0 only. It follows that β̌
−
m` = 0 for ` = 1, 2, . . . .

Based on (2.42) and (2.43), we can write α±m` as

α+
m` = [ξ(m) − iζ(m)]α̂+

m` + α̌+
m`, α−m` = [ξ(m) + iζ(m)]α̂−m`, ` = 1, 2, . . . . (4.29)

Here α̂±m` results from the mth-harmonic body motion (β±m1), while α̌+
m` is associated

with the free-surface forcing (γ+
m`) and the body forcing (β̌

+

m`).
Upon integrating the pressure (2.18) over the body, we obtain the force on the

body:

F (m)
x = mπiωρa{α̌+

m1 + [ξ(m) − iζ(m)]α̂+
m1 + [ξ(m) + iζ(m)]α̂−m1}+ πiρaF(m), (4.30)

F (m)
y = −mπωρa{α̌+

m1 + [ξ(m) − iζ(m)]α̂+
m1 − [ξ(m) + iζ(m)]α̂−m1} − πρaF(m), (4.31)

where F(m) is given by

F(m) = − i

4π

m−1∑
q=1

∫ 2π

0

[∇φ(q) · ∇φ(m−q)]e−iθ dθ. (4.32)

After applying Newton’s equation of motion, we have

ξ(m) = −iζ(m) =
α̌+
m1 +F(m)/mω

imωa− 2α̂+
m1

. (4.33)

As with the lower-order solutions for the body responses, ξ(m) and ζ(m) have the same
magnitude but differ in phase by π/2, and thus describe a clockwise circular motion
of the body.
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Using (4.33), we have from (4.25) and (4.29) that β−m`, α−m` = 0, ` = 1, 2, . . . .
Consequently, C−m = 0 (cf. (2.45)) and hence φ(m) = 0 as x→−∞ (cf. (2.47)). The total
potential on the body has the form:

φ(m)(θ) =

∞∑
`=0

imωaα̌+
m` + 2α̂+

m`F(m)/mω

imωa− 2α̂+
m1

ei`θ ; (4.34)

and the potential on the mean free surface and far downstream are obtained to be

φ(m)(x) =

∫ ∞
0

_
C+
m (k)

k −Km

e−ikx dk, y = 0, (4.35)

φ(m)(x) ∼ −2iπC+
m (Km)e−iKmz, x→+∞. (4.36)

The corresponding surface elevation η(m) is given in terms of products of φ(n), n 6 m,
and its derivatives. Since all these quantities are zero as x→−∞ except φ(1) which is
equal to φ(1)

I , η(m) has the value given by the incident wave, and thus the leading-order
reflected waves of any harmonic vanish far upstream of the body.

5. Numerical confirmation
As illustration, and to obtain numerical support of our theoretical predictions, we

perform time-domain simulations of the nonlinear interactions between surface waves
and a submerged circular cylinder to obtain high-order high-harmonic results. For
completeness, we consider not only the cases of forced circular motion (§ 3), and free
motion in an incident wave (§ 4), but obtain also numerical confirmation for the case
of a fixed cylinder considered by Palm (1991).

The numerical method we use is an extension of the high-order spectral (HOS)
method of Liu et al. (1992) to include body motions. In the present method, the body
boundary condition is satisfied at its instantaneous position. If the body is not fixed
or captive, its motion at any time is obtained by integrating the equations of motion
resulting from Newton’s second law with the forces on the body provided by pressure
integration using

p(θ, t)/ρ = − dΦ

dt
+ (Ẋ − 1

2
∇Φ) · ∇Φ, (5.1)

where d/dt represents the substantial derivative and Ẋ the body velocity.
In the HOS method, the free surface and body surface are represented respectively

by dipole and source distributions given in terms of Fourier spectral series (with NF ,
NB modes respectively). The HOS method follows the evolution of the free-surface
waves using a pseudo-spectral treatment of the nonlinear free-surface conditions
and accounts for nonlinear interactions among the NF wave modes and NB source
modes up to an arbitrary order M in wave steepness. For moderately steep waves, the
method exhibits exponential convergence with respect to the order M and the number
of spectral modes NF , NB . In addition, with the use of fast-Fourier transforms, the
computational effort is only linearly proportional to NF (typically NF � NB), so that
in practice very large values of NF can be used to obtain extremely high accuracy
results. Details of the HOS implementation and performance can be found in Liu et
al. (1992) and Liu (1994) and are omitted here.
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5.1. Decomposition of the nonlinear wave field

In the nonlinear time-domain simulation, we obtain a limit-cycle (steady-state)
solution of the nonlinear total wave field η(x, t) around the body after some time.
To compare with theory, it is necessary to extract the free-wave information at each
harmonic frequency from η(x, t). The total wave field η(x, t) contains two components:
the incident waves and the body disturbance, η(x, t) = ηI (x, t) + ηD(x, t). The incident
wave is known and it is only necessary to consider the harmonic decomposition of
the disturbance wave field:

ηD(x, t) =

∞∑
m=0

η
(m)
D (x)eimωt + c.c., (5.2)

where c.c. represents the complex conjugate of the preceding term. At each harmonic,
η

(m)
D (x) contains free propagating, locked, and evanescent waves:

η
(m)
D (x) = η

(m)
F (x) + η

(m)
L (x) + η

(m)
E (x), m = 1, 2, . . . , (5.3)

where ηF , ηL, and ηE represent free, locked, and evanescent wave components, respec-
tively. A free wave satisfies the linear dispersion relation, and has a spatial dependence
of the form

η
(m)
F (x) = A

(m)
F eiKmx, m = 1, 2, . . . , (5.4)

where A(m)
F denotes the complex amplitude of the mth-harmonic free wave.

A locked wave does not satisfy the dispersion relation and has multiple wave-
numbers. Physically, a locked wave is the response to forcing on the free surface due to
nonlinear combinations of free waves at that frequency. Given free-wave components
with wavenumbers Km and frequencies mω, there are locked waves η(m)

L at frequency
mω resulting from combination of free-wave components of frequency `iω, satisfying∑

i `i = m. For a given m, there may be Jm such frequency combinations, with the
associated wavenumbers for the locked waves given by Kmj =

∑
i Ki. Consequently,

η
(m)
L has the general form

η
(m)
L (x) =

Jm∑
j=1

A
(m)
Lj eiKmjx, m = 2, 3, . . . , (5.5)

where A(m)
Lj is the amplitude of the jth-component of the mth-harmonic locked waves.

For m = 1, there is no locked wave, η(1)
L (x) = 0.

At each harmonic, evanescent waves have the same frequency but are non-
propagating and localized near the body with attenuation rates with distance governed
by local geometry/body submergence. The far-field behaviour of such evanescent dis-
turbances can be obtained by approximating the body as a dipole located at the
(mean) body centre, so that asymptotically

η
(m)
E ∼ A(m)

e /|Kmx|2, |Kmx| � 1, (5.6)

where A(m)
e denotes the amplitude of mth-harmonic evanescent waves.

With the (far-field) spatial dependences of η(m)
F , η(m)

L and η
(m)
E at each harmonic

explicitly given by (5.4), (5.5) and (5.6), the unknown harmonic amplitudes can be
obtained simply, say, by collocating (5.3) at an appropriate set of discrete points on
the (mean) free surface where the values of the surface elevation can be obtained
from simulation.
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ε |η(1)
F− |/|η(1)

F+
| |η(2)

F− |/|η(2)
F+
| |η(3)

F− |/|η(3)
F+
| ε2

0.025 0.00012 0.00016 0.00013 0.00063
0.050 0.00058 0.00028 0.00016 0.00250
0.075 0.00290 0.00170 0.00180 0.00560
0.100 0.01000 0.01100 0.01700 0.01000

Table 1. Ratios of the amplitudes of the reflected and transmitted waves of the first three harmonics
by a fixed submerged circular cylinder, radius Ka = 0.25, submergence h/a = 2, for different incident
wave steepness, ε ≡ KA. The results are obtained using the HOS method with M = 4, NF = 1024,
NB = 64.

R/a |η(1)
F− |/|η(1)

F+
| |η(2)

F− |/|η(2)
F+
| |η(3)

F− |/|η(3)
F+
| ε2 ≡ (Kηmax)

2

0.05 0.00008 0.00004 0.00002 0.00007
0.10 0.00036 0.00053 0.00046 0.00026
0.15 0.00095 0.00073 0.00060 0.00068
0.20 0.00190 0.00160 0.00140 0.00145

Table 2. Ratios of the amplitudes of the left and right radiated waves of the first three harmonics
due to the forced clockwise circular motion of a submerged circular, radius Ka = 0.25, submergence
h/a = 2, for different motion amplitudes, R/a. The results are obtained using the HOS method with
M = 4, NF = 1024, NB = 64.

5.2. Numerical results

We choose a cylinder radius of Ka = 0.25 and a mean submergence of h/a = 2. The
computational domain has a length equal to 32 fundamental wavelengths with the
body located in the middle of the domain. All numerical results are obtained with
order M = 4, and number of free-surface and body modes NF = 1024, NB = 64.
With these computational parameters, the results for surface wave elevations up to
third harmonic are established to be accurate to at least the fourth decimal place.

Case (1). Wave diffraction by a fixed cylinder.
Numerical results for the ratios of the amplitudes of reflected (η(m)

F− ) and transmitted

(η(m)
F+

) waves for m = 1, 2, 3, are presented in table 1 for a range of incident wave

steepness ε (a column for ε2 is also given for convenience). It is seen that in all cases
the reflected waves are two orders smaller than the transmitted waves. This is in
support of the theoretical prediction of Palm (1991) concerning the vanishing of the
leading-order reflected waves of any harmonic for this problem.

Case (2). Wave radiation by a cylinder in forced circular motion.
For the cylinder in a clockwise circular orbit, table 2 gives the ratios of the

amplitudes of the radiated waves far upstream (η(m)
F− ) and far downstream (η(m)

F+
) for

a range of motion amplitudes R/a. These results show that for clockwise circular
motion, the leading-order outgoing waves at each harmonic are two orders (in wave
steepness) smaller to the left (ηF−) than to the right (ηF+

) at least up to m = 3. This
confirms the analysis in § 3.

Case (3). Wave scattering by a cylinder free to respond.
In this case, we first confirm that the harmonic motions are indeed clockwise

circular (for an incident wave from left to right) as obtained in § 4. Of main interest
here are the amplitudes of the total scattered waves far upstream and downstream
of the cylinder. These results are given in table 3 in terms of the ratios of these



Radiated and diffracted waves due to a circular cylinder 281

ε |η(1)
F− |/|η(1)

F+
| |η(2)

F− |/|η(2)
F+
| |η(3)

F− |/|η(3)
F+
| ε2

0.021 0.00031 0.00043 0.00091 0.00044
0.116 0.01368 0.02000 0.02000 0.01346
0.188 0.02852 0.09830 0.09010 0.03534

Table 3. Ratios of the amplitudes of the upstream and downstream scattered waves of the first
three harmonics by a neutrally-buoyant submerged circular cylinder, radius Ka = 0.25, submergence
h/a = 2, for different incident wave steepness, ε ≡ KA. The results are obtained using the HOS
method with M = 4, NF = 1024, NB = 64.

amplitudes for the first three harmonics for a range of incident wave steepness ε. The
numerical results confirm the theoretical prediction in § 4 regarding vanishing of the
leading-order scattered wave far upstream. As pointed out in § 4, drift motion does
not affect the leading-order results. This is also confirmed numerically (by allowing
or disallowing the cylinder to drift). The results here are for the cylinder not allowed
to drift.

6. Conclusions and discussion
We study the outgoing waves resulting from nonlinear radiation and diffraction by

a submerged horizontal circular cylinder undergoing a forced circular motion or free
motion in respond to incident waves. We show that: (a) for the cylinder undergoing
forced circular motions, the leading-order outgoing waves of any harmonic are
generated in one direction only (toward the right for a clockwise motion); and (b) for
a neutrally buoyant cylinder under incident waves, the leading-order scattered wave
of any harmonic vanishes upstream of the body. These results are generalizations to
arbitrary high order/harmonic of the classical linear results of Ogilvie (1963) for a
submerged cylinder in motion. We confirm these theoretical predictions up to third
order by nonlinear time-domain simulations.

The analysis in § 4 for the reflection of monochromatic incident waves by an
untethered cylinder can be extended, in a straightforward manner, to bichromatic
and multichromatic incident waves. For two incident waves with frequencies ω1 and
ω2, an analogous result can be obtained that the leading-order waves of frequency
mω1 +nω2 (m, n arbitrary positive integers) are not reflected and in response, the body
sustains a circular motion of frequency mω1 + nω2 at (m + n)th order. For multiple
incident waves, the reflected waves of any sum frequency are two orders smaller in
magnitude than the corresponding transmitted waves.

Owing to the use of perturbation expansions, the present analysis of the leading-
order solution for any harmonic is strictly valid only for (moderately) small surface
wave and body motion amplitudes. For large-amplitude waves or body motions,
higher-order corrections to the leading-order solution at any harmonic, which are two
orders smaller, may become appreciable and need to be included. In this situation,
the present predictions of vanishing upstream waves may no longer hold (see e.g. Wu
1993; Liu et al. 1992).

This work is supported financially by grants from the Office of Naval Research
(Divisions of Mechanics & Energy Conversion and Ocean Engineering & Marine
Systems) whose sponsorship is gratefully acknowledged.
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